Massless Majorana-Like Charged Carriers in Two-Dimensional Semimetals
نویسندگان
چکیده
The band structure of strongly correlated two-dimensional (2D) semimetal systems is found to be significantly affected by the spin-orbit coupling (SOC), resulting in SOC-induced Fermi surfaces. Dirac, Weyl and Majorana representations are used for the description of different semimetals, though the band structures of all these systems are very similar. We develop a theoretical approach to the band theory of two-dimensional semimetals within the Dirac–Hartree–Fock self-consistent field approximation. It reveals partially breaking symmetry of the Dirac cone affected by quasi-relativistic exchange interactions for 2D crystals with hexagonal symmetry. Fermi velocity becomes an operator within this approach, and elementary excitations have been calculated in the tight-binding approximation when taking into account the exchange interaction of π(pz)-electron with its three nearest π(pz)-electrons. These excitations are described by the massless Majorana equation instead of the Dirac one. The squared equation for this field is of the Klein–Gordon–Fock type. Such a feature of the band structure of 2D semimetals as the appearance of four pairs of nodes is shown to be described naturally within the developed formalism. Numerical simulation of band structure has been performed for the proposed 2D-model of graphene and a monolayer of Pb atoms.
منابع مشابه
Spatial charge inhomogeneity and defect states in topological Dirac semimetal thin films of Na3Bi
Topological Dirac semimetals (TDSs) are three-dimensional analogs of graphene, with carriers behaving like massless Dirac fermions in three dimensions. In graphene, substrate disorder drives fluctuations in Fermi energy, necessitating construction of heterostructures of graphene and hexagonal boron nitride (h-BN) to minimize the fluctuations. Three-dimensional TDSs obviate the substrate and sho...
متن کاملMassless Majorana and Weyl fermions cannot be distinguished
In this note, I will demonstrate that a theory of a massless neutrino (in 3+1-dimensional quantum field theory) can be described either as a theory of a massless Weyl fermion or as a theory of a massless four-component Majorana fermion. The two formulations are indistinguishable, as they arise from exactly the same Lagrangian when expressed in terms of two-component fermions. I will also exhibi...
متن کاملNontrivial Berry phase in magnetic BaMnSb2 semimetal.
The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones e...
متن کاملTopological spinon semimetals and gapless boundary states in three dimensions.
Recently, there has been much effort in understanding topological phases of matter with gapless bulk excitations, which are characterized by topological invariants and protected intrinsic boundary states. Here we show that topological semimetals of Majorana fermions arise in exactly solvable Kitaev spin models on a series of three-dimensional lattices. The ground states of these models are quan...
متن کاملConfinement of massless Dirac fermions in the graphene matrix induced by the B/N heteroatoms.
In this work, the systems are constructed with the defect lines of B-B or N-N dimers embedded in a graphene matrix using density functional theory. It is found that the Dirac-cone dispersions appear at the Fermi level in the bands introduced by the B or N heteroatom, linear B-B or N-N dimers, demonstrating that the carrier mobility is ∼10(6) m s(-1) which is comparable with that of the pristine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 8 شماره
صفحات -
تاریخ انتشار 2016